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Abstract Understanding the variability in the Hadley circulation (HC) changes is crucial for understanding
ocean-atmosphere interactions. In this study, the variability in the boreal winter HC in the last 4 decades

is explored using multiple reanalyzes and model simulations. The results show that regime shift occurred

in the leading mode of HC variability. The primary mode of the recent HC is dominated by an equatorially
symmetrical pattern, which was considered the second mode in previous studies. The regime shift in HC
variability is mainly due to the El Nifio-Southern Oscillation (ENSO), which explains both the spatiotemporal
variation and formation of HC variability. Moreover, the abilities of the models to reproduce HC variability is
subject to their ability to simulate ENSO variability, suggesting that the ENSO has become a more important
modulator of the HC variability in recent decades, and additional research is warranted to evaluate future
climate changes and potential effects on the HC.

Plain Language Summary The Hadley circulation (HC) has significant regulatory impacts on
tropical and extratropical interactions. As a thermal-dynamical circulation, the variability in the HC exhibits

a substantial correlation with the underlying thermal conditions. However, strong interdecadal variations have
been observed in the tropical sea surface temperature (SST) around 1976/1977, particularly in the SST related
to the El Nifilo—Southern Oscillation (ENSO). The HC variability after 1977 is still unknown. We investigate the
spatial-temporal variation in the boreal winter HC during the period of 1980-2020. The results show that the
primary dominant mode (EOF1) of the HC presents an equatorially symmetrical structure with ascension
around the equator. This pattern corresponds to the second dominant mode in preceding studies. The different
result indicates that a regime shift in HC variability has occurred. We find that the formation of EOF1 is due to
the enhanced variation in ENSO, which explains the spatial-temporal variations in EOF1. This result is further
confirmed in model simulations, highlighting a more important role of the ENSO on the HC in recent decades.
These results deepen our understanding of HC variability and emphasize the important climatic effects of the
ENSO, which is of great interest because more severe ENSO events are projected for the future.

1. Introduction

The El Nifio—Southern Oscillation (ENSO) phenomenon is the dominant mode of tropical climate variabil-
ity, exerting a pivotal influence on global weather and climate anomalies (e.g., Klein et al., 1999; Trenberth
et al., 1998; Wallace et al., 1998). Previous studies show that El Nifio has substantial impacts on tropical and
extratropical oceans and atmospheric circulations via atmospheric bridges (Alexander et al., 2002; Lau, 1997),
oceanic teleconnections (Clarke & Van Gorder, 1994), and air-sea coupled bridges (Y. Li et al., 2019). However,
significant interdecadal variations are reported in the relationships between the ENSO and its related climatic vari-
abilities. For example, interdecadal shifts are observed in the associations between the ENSO and North Atlantic
Oscillation (S. Hu et al., 2023; Zhang et al., 2021), precipitation over the USA (Gutzler et al., 2002; Higgins
et al., 2000), sea surface temperature (SST) over the tropical Indian Ocean (Terray & Dominiak, 2005; Wang &
An, 2001), and the Indian summer monsoon (Krishnamurthy & Goswami, 2000; K. K. Kumar et al., 1999). These
interdecadal variations in the ENSO-related connections are partly because the ENSO itself exhibited an inter-
decadal change (McPhaden et al., 2011; Zhang et al., 2019). Extensive evidence has indicated that the meridional
extent (Zhang et al., 2013), temporal evolution (Z. Hu et al., 2013; A. Kumar & Hu, 2014), period (Fedorov &
Philander, 2001), intensity (Gong et al., 2020; Grothe et al., 2020), and propagation direction (Lu et al., 2022) of
the ENSO have changed around 1976/1977. Consequently, the interdecadal variation in the ENSO may trigger
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corresponding changes in climatic variabilities and regional climate anomalies, particularly in systems whose
variability is closely associated with the ENSO.

The Hadley circulation (HC) is a highly important, large-scale atmospheric circulation at low latitudes, which
transports more heat, angular momentum, and mass from the tropics to the extratropics than do transient and steady
vortices and contributes to tropical and extratropical climate anomalies (e.g., Chang, 1995; Feng & Li, 2013;
Held, 2001). As a thermal-dynamical circulation, the HC intensity (HCI) is tightly attached to underlying thermal
conditions. An enhanced HC is expected to be observed during El Nifio winters, whereas a suppressed HC is seen
in La Nifia winters (e.g., Nguyen et al., 2013; Oort & Yienger, 1996). The ENSO impacts the HCI by inducing
anomalous meridional circulation, which in turn affects the spatial-temporal variability of the HC. The interan-
nual variability in the seasonal HC is predominantly controlled by two leading modes (e.g., Feng et al., 2013;
Guo et al., 2016; Ma & Li, 2008; Sun & Zhou, 2014); the first mode is characterized by a single cross-equatorial
cell with opposite vertical motions on each side (equatorially asymmetrical mode, AM; Figures S2a and S2b
in Supporting Information S1), and the second mode features a pair of cells with a combined ascending branch
around the equator (equatorially symmetrical mode, SM; Figures S2c and S2d in Supporting Information S1). Of
note is that the AM and SM are consistently observed in both the annual cycle and interannual variability (e.g.,
in period 1948-1979 and 1948-2010 as reported) of the HC, inferring that the AM and SM are not sensitive to
the sample length. Meanwhile, considering that the meridional distribution of HC is subjected to the underlying
meridional gradient of tropical SST (Feng et al., 2023; E. Schneider & Lindzen, 1977), an equatorially asymmet-
rical/symmetrical SST distribution would associate with equatorially asymmetrical/symmetrical HC anomalies.
It is established that the AM variation is attached to SST over tropical Indian Ocean (Feng et al., 2013; Ma &
Li, 2008), whose formation is due to the inhomogeneous warming trend over this region (J. Li & Feng, 2015).
And the SM variation is closely linked to the ENSO because SST anomalies associated with the ENSO are equa-
torially symmetrical (Guo & Tan, 2018; Sun et al., 2019). In later research, the effect of the ENSO on HC modes
is shown to be dependent on the ENSO phase; a strengthened SM is observed along with El Nifio but only during
its developing phase, whereas an intensified AM is seen during its decaying phases (Feng et al., 2023). This can
be mainly attributed to the occurrence of anomalous equatorially asymmetrical SST over the eastern Pacific and
Indian Oceans in the El Nifio decaying phase (Feng et al., 2023; McGregor et al., 2013). These findings highlight
the importance of the ENSO in modulating HC variability; however, the connections between the ENSO and HC
vary along with the ENSO phases.

In addition to the developing and decaying phases, the mature phase is the vital time period of ENSO events
and is accompanied by the strongest SST anomalies (Chen & Jin, 2020; Peng et al., 2020). Although preceding
studies have examined ENSO impacts on HC during its mature phase mainly focused on the HC's intensity (e.g.,
J. Li & Feng, 2015; Oort & Yienger, 1996), potential influences of interdecadal variation in the ENSO on the
HC's variability have not been reported. Substantial interdecadal variations are detected in the intensity, period,
and meridional scale of the ENSO around 1976/1977, and such interdecadal changes would inevitably change the
corresponding SST distributions (Capotondi & Sardeshmukh, 2017; Deser et al., 2012), thus affecting the HC
variability. However, the characteristics of the HC variability following the interdecadal variation in ENSO are
still unknown, as is the extent to which the ENSO interdecadal variation affects the HC variability and whether
the current climate models can reproduce these associated variations. Here, we address these questions and inves-
tigate the characteristics of boreal winter (December—February) HC variability after the interdecadal variation
in the ENSO using multiple reanalyzes and ensembles of model outputs.

2. Data and Methods

The monthly average atmospheric variables used are from JRAS5 (Kobayashi et al., 2015), MERRA2 (Gelaro
etal.,2017), ERAI (Dee et al., 2011), ERAS (Hersbach et al., 2020), CFSR (Saha et al., 2010), and NOAA-20CR
(Compo et al., 2011), and the SST data set is from HadISST (Table S1 in Supporting Information S1, Rayner
et al., 2003). In addition, the NCEP1 (Kalnay et al., 1996) and NOAA-20CR are used to examine the HC varia-
bility before 1980. The Nifio 3.4 index (an area-averaged SST over 5°S—5°N, 120°-170°W) is employed to depict
the variability in the ENSO. Seventeen Atmospheric Model Intercomparison Project (AMIP) models (Table S2
in Supporting Information S1) and 20 Coupled Model Intercomparison Project (CMIP) models (Table S3 in
Supporting Information S1) from CMIP6 are employed due to the availabilities. Only one member (rlilpl) is
selected in each model. The AMIP is directed by the real-time SST as the boundary forcing, facilitating a feasible
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simulation to investigate the impacts of SST on the circulation. To obtain the ensemble average of the models, the
individual models are interpolated to the same horizontal and vertical resolutions.

The HC can be characterized by mass stream—function (MSF, Oort & Yienger, 1996). It represents the vertical
integration of the zonally averaged meridional winds, providing a quantitative depiction of the global meridional
circulation,

P

2ra cos _
w(p.p) = g / [0(e, )| dp
0

where v is meridional wind, « is the radius of the Earth, p is pressure, ¢ is latitude, and g is Earth's gravity. The
[ 1and ~ operators represent zonal and temporal averaging, respectively. The empirical orthogonal function is
employed to detect the primary mode (EOF1) and the corresponding principal component (PC1) of the boreal
winter HC. Correlation and partial correlation analyses were employed to detect the relationship between the
tropical SST and HC. The partial correlation is a measure of the linear dependence between two variables where
the influence from possible controlling variables is removed (Freund & Wilson, 2003). The detailed method is
as follows:

r Tij ~rik"jk

ijk=
(=) (1=73)

Where r; represents the correlation coefficient between variables i and j, r,, represents the correlation coefficient
between variables i and &, and ry represents the correlation coefficient between variables j and k. In this study, i
represents HC PC1, j represents SST, and k represents the Nifio 3.4 index. The Nifio 3.4 index is selected as the
controlling variable in partial correlation to show the contributions of the ENSO to the relationships between HC
PC1 and SST. The statistical significance of the correlation values is evaluated using Student's ¢ test.

3. Results

Climatological distributions of the boreal winter HC and its EOF1 are displayed in Figure 1. These six reanalyzes
indicate a consistent spatial characteristic in the climatological distribution, with a spatial correlation coefficient
above 0.99 across different data sets (Figure S2a in Supporting Information S1). The northern cell exhibits domi-
nance in the climatological boreal winter HC, with a combined ascending branch at approximately 12°S, and the
two descending branches manifest near latitudes of approximately 30°N and 35°S within each hemisphere. That
is, the climatological winter HC exhibits an equatorially asymmetrical pattern, indicating a transfer of mass from
the northern to southern hemispheres through the lower troposphere (Kang et al., 2008; T. Schneider et al., 2014).
However, EOF1 of the HC exhibits a quasi-symmetrical distribution around the equator, explaining ~39% of the
variance, showing combined ascending around the equator and two descending branches at approximately 25°S
and 15°N in each hemisphere. A similar result is observed in the detrended data sets across different reanaly-
zes. Note that this pattern is consistently observed across the six reanalyzes even the length of the data sets is
different (Table S1 in Supporting Information S1), with the spatial correlation exceeding 0.89 across different
data sets (Figure S2b in Supporting Information S1), thereby underlying the robustness of this mode. Although
the strength of the northern cell is greater than that of the southern cell (paralleling the stronger climatological
northern cell), the spatial structure and extent of the two cells are equivalent, resembling the distribution of SM
(Ma & Li, 2008; Figures S1c and S1d in Supporting Information S1). Of note is that the first leading mode of the
variability of boreal winter HC before 1980 is an AM, while the second leading mode exhibits a SM (Figure S1
in Supporting Information S1). The above result suggests that SM replaces AM in the last 40 years and turns into
the primary source of variability of the HC in boreal winter, indicating that regime shift has occurred in the boreal
winter HC variability. In addition, the opposing distributions of EOF1 to the north and south of the equator are
different from its climatological distribution, implying a narrowing and northwards shift of the ascending branch
(Byrne et al., 2018; Hari et al., 2020). Consequently, this northwards ascension would induce a shift in convection
and precipitation during this season.

Correspondingly, the temporal variation in this mode is examined (Figure 1g). The PC1 shows strong interannual
variation without obvious linear trends. The three strongest values in PC1 occur in the winters of 1982, 1997,
and 2015, which all coincide with well-defined El Nifio events. This suggests that the EOF1 variation may be
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Figure 1. The climatological mean of the boreal winter mass stream—function (shading) and its principal mode (EOF1, contour) determined from (a) MERRAZ2, (b)
JRAS5, (c) ERAS, (d) CFSR, (e) ERAL, and (f) NOAA-20CR. The contour interval is 0.03 X 10'° kg/s. Solid (dotted) contours are positive (negative) and the zero
contour is thickened. The number is the corresponding explained variance. (g) Time series for EOF1 of the boreal winter Hadley circulation (solid line). The shading for
each data set is referenced to its one standard deviation.

connected to the ENSO. Moreover, it is seen both the EOF1 and PC1 based on the six data sets are highly consist-
ently with each other (Figure S1 in Supporting Information S1), thus only the result based on the JRASS is shown.
The relationship between EOF1 and the underlying SST is further explored by examining their linear correlations
(Figure 2a). In the tropical eastern and central Pacific and tropical Indian Ocean, significant positive correla-
tions are observed, contrasting with negative correlations observed in the western Pacific, presenting a classical
ENSO pattern. This finding is additionally supported by the high correlation coefficient between PC1 and the
Niflo 3.4 index, with a coefficient exceeding 0.77 across different data sets (Figure 3b). Note that the substantial
relationship between PC1 and the Nifio 3.4 index is robust for both the positive and negative values of the Nifio
3.4 index, suggesting that no asymmetry exists in this relationship. We further examine the relationship between
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Figure 2. (a) Correlation between PC1 and boreal winter sea surface temperature (SST). (b) Same as (a), but without the El Nifio—Southern Oscillation effect. Dark
spots indicate significant values at the 0.05 level. (c) The difference in the standard deviation of SST between the periods of 1980-2020 and 1948-1979. The green
rectangle represents the selected tropical Indian Ocean region (40°-120°E, 10°S—-10°N).

PC1 and other extratropical climate variabilities (i.e., the North Atlantic Oscillation, the Atlantic Multidecadal
Oscillation, and the Pacific Decadal Oscillation), showing insignificant relationships. That is the role of the
extratropical signals on the HC EOF1 is not as important as that of the ENSO. Moreover, the significant link-
age between tropical SST and EOF1 almost disappears when the effects of the ENSO are removed (Figure 2b),
further revealing that the significant correlations between tropical SSTs and EOF1 are mainly due to the ENSO.
The significant linkage between the ENSO and EOF1 not only accounts for the temporal evolution of PC1 but
also explains the spatial distribution of EOF1. In the lower troposphere, the spatial distribution of the meridional
circulation is mainly subjected to the meridional structure of the SST (e.g., Feng & Li, 2013; Numaguti, 1994;
E. Schneider & Lindzen, 1977). The SST anomalies related to El Nifio and La Nifia events during their mature
phases are equatorially symmetrical (Feng et al., 2019; Zhang et al., 2013), favoring equatorially symmetrical
meridional circulation anomalies and contributing to EOF1 formation. That is, the spatial-temporal variation in
the ENSO exerts a significant influence on the HC variability.

Moreover, the simulated climatological HC as well as its primary mode from 17 AMIP models are checked to
verify the contribution of the underlying SST to the formation of HC variability. The simulated climatological
HC agrees with the reanalyzes, which is evident through significant correlations as well as standard deviation
ratios (Figure S3 in Supporting Information S1). Consequently, the ensemble mean is employed to investigate
the variability of the HC, as shown in Figure 3. The ensemble EOF1 agrees with the reanalyzes and exhibits an
equatorially symmetrical structure, showing significant spatial correlations with the reanalyzes with coefficients
exceeding 0.90. Note that the simulated HC EOF1 bears an even greater explained variance (64%) than that of
the reanalyzes, highlighting the impacts of underlying SSTs on HC variability. This greater explained variance
value is because only ocean-driven atmospheric circulation is considered in the AMIP; however, strong air-sea
interactions are involved during an ENSO event, and the HC also shows strong feedbacks on the ENSO (S. Hu
& Fedorov, 2018; Peng et al., 2019, 2020). Nevertheless, the high similarity between the reanalyzes and AMIP
simulation highlights the contribution of the SST on the formation of EOF1 of the HC.
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Figure 3. (a) Same as Figure 1a, but for the ensemble average from 17 Atmospheric Model Intercomparison Project (AMIP)
models. (b) Scatter plot of the Nifio 3.4 index versus the Hadley circulation PC1 (red) and the AMIP ensemble mean (blue).
R indicates the correlation coefficient. The diameter of the bubble represents the sequence of years in the PC1, the larger
bubbles indicate the later of the year.
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The possible contribution of the ENSO to the formation of EOF1 is explored above. However, it is still unknown
why the SM could replace the AM and become the first leading mode of HC variability. To answer this question,
we analyze the interdecadal variations in tropical SST variability by exploring the difference in its standard devi-
ations between 1980-2020 and 1948-1979 (Figure 2c¢). Compared with that in the tropical Indian Ocean, the SST
variability within the tropical central and eastern Pacific is significantly enhanced (Y. Li et al., 2019, 2021). As
reported, the AM variation is mainly attached to the SSTs within the tropical Indian Ocean. We further analyze
the standard deviation in the areal mean SST over the Indian Ocean (40°-120°E, 10°S—10°N; the green rectangle
in Figure 2c) as well as that in the Nifio 3.4 index. The standard deviation in the Nifio 3.4 index largely increases
in the period after 1979 (1.09°C vs. 0.86°C), while there is little change in the tropical Indian Ocean SST (0.26°C
vs. 0.25°C). That is, the variability in the ENSO has been largely enhanced in the last 40 years, replacing the SST
in the tropical Indian Ocean as the dominant factor in impacting the variability of the boreal winter HC. This
finding shows that increased ENSO variability may be a possible cause for the regime replacement of the HC
during the last 40 years.

We further use the CMIP6 model output to investigate the effect of the ENSO on HC variability. We divide all
CMIP6 models into two groups according to their ability to reproduce HC EOF1: that is, the well-simulated
group (Type I), with spatial correlation coefficients exceeding 0.5 between the simulated and observed EOF1,
and the remaining models fall into the Type II group (Figure S3d in Supporting Information S1). The result is
not sensitive to the chosen threshold value, similar result is seen for a threshold value 0.60. The 0.50 is chosen
as the threshold is for a greater sample size. The classification of the two groups of models is detailed in Table
S3 in Supporting Information S1. Subsequently, the ensemble mean of the two groups of models is determined.
The results of HC EOF1 simulated by the models are shown in Figure 4. We see that the Type I models can well
reproduce the spatial characteristics of HC EOF1, with a 0.83 spatial correlation coefficient with the observation.
In contrast, EOF1 of the Type II models shows an asymmetrical structure (showing a 0.03 spatial correlation
coefficient with the observation), exhibiting a large bias with the reanalyzes. The better simulation ability of
HC EOF1 in Type I models is mainly due to their better performance in reproducing the ENSO variability. The
standard deviation of the simulated Nifio 3.4 index is close to that of the observations (1.17°C vs. 1.09°C). In this
way, the Type I models well reproduce the association between PC1 and tropical SST (figure not shown), as well
as the relationship with the Nifio 3.4 index. However, the Type Il models underestimate the ENSO variability, and
the relationship between PC1 and the tropical SST are not captured (figure not shown), either the connection with
the Nifio 3.4 index. This result indicates that the simulation performance of the ENSO variability determines a
model's ability to reproduce the variability in the HC and further indicates that the variability in the ENSO is an
important factor affecting the spatiotemporal variation in HC EOF1.

4. Conclusion and Discussion

We investigate the variability in boreal winter HC during the last 40 years in this study. The primary mode of
the HC exhibits an equatorially symmetrical pattern, which was considered the second leading mode in previous
studies (e.g., Guo & Tan, 2018; Ma & Li, 2008). The replacement of the sequence in the leading modes suggests
that a regime shift has occurred in the HC variability. This result is consistent across six different reanalyzes,
implying the robustness of the regime replacement findings in HC variability. The regime shift in HC variability
is accurately captured in the AMIP models, indicating that the variation in the HC is mainly connected with
underlying thermal conditions.

The ENSO explains the spatial and temporal variation in the HC EOF1. In terms of the spatial distribution,
ENSO-related SSTs exhibit an equatorially symmetrical pattern, which is associated with the equatorially
symmetrical circulation (Bordoni & Schneider, 2010; Lindzen & Nigam, 1987). From a temporal perspective, the
PC1 of this symmetrical mode exhibits a strong correlation with the Nifio 3.4 index across six different reanaly-
zes. That is, the variation in the ENSO underpins the formation of HC EOF1. Moreover, an evident enhancement
is observed in the variability of the ENSO after 1979, supporting the increased equatorially symmetrical variation
in the HC. This result is further corroborated by the CMIP6 simulations. We see that the abilities of the models
to reproduce the symmetrical mode are subject to whether they can well simulate the ENSO variability. Models
that underestimate the ENSO variability cannot reproduce the connection between the ENSO and HC EOF1 and
show large biases in simulating the dominant mode of the HC. The observed and modeled results consistently
reveal that the regime shift of the HC variability is mainly due to the enhanced ENSO variability during the last
40 years.
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Figure 4. (a) Same as Figure 3a, but for the ensemble mean from the Type I models. (b) Same as (a), but from the Type II models. (c) Same as Figure 3b, but for the
Type I models. The black and red lines indicate the standard deviation of the Nifio 3.4 index calculated from HadISST and the ensemble mean of the Type I models,
respectively. (d) Same as (c), but for the Type II models.

This study emphasizes the importance of the ENSO in modulating the HC variability. Notably, the SSTs in the
tropical Indian Ocean are reported to be responsible for the first leading mode (i.e., the equatorially asymmetrical
mode) of the seasonal HC (e.g., J. Li & Feng, 2015; Ma & Li, 2008); we see that there is little variation in the
variability of tropical Indian Ocean SSTs. Conversely, the variability in the tropical central and eastern Pacific
SSTs has become more active after 1979. It is of interest to further detect whether such a regime shift also occurs
in other seasons. On the other hand, increased variability in the ENSO is projected under different greenhouse
warming scenarios (Cai et al., 2022; Fredriksen et al., 2020; McGregor et al., 2022), and exploration of associated
changes in HC variability would be worthwhile. Overall, our findings reveal that the increased ENSO variability
contributes to the regime replacement in the HC variability, which may alter relevant convection and precipitation
patterns, warranting additional research.

Data Availability Statement

Atmospheric reanalyzes including MERRA2, ERAIL ERAS, JRASS, CFSR, NCEP1, and NOAA-20CR used in
the study are available at Gelaro et al. (2017), Dee et al. (2011), Hersbach et al. (2020), Kobayashi et al. (2015),
Saha et al. (2010), Kalnay et al. (1996), and Compo et al. (2011). The SST data set from HadISST is available at
Rayner et al. (2003). The AMIP and CMIP model's output analyzed in this study can be found in the Earth System
Grid Federation (ESGF) repository (Cinquini et al., 2012).
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